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Our original plan for the work we performed under this grant was divided into four parts. Here
we discuss the research and results we obtained in that framework.

1. Understanding spin coherence in bulk Si and near surfaces and interfaces

In previous studies we had found that the coherence of electron spins bound to donors in bulk Si
(as measured by in a 2-pulse Hahn echo experiment) could be very long, but the ultimate limits
of the coherence were not known, and the coherence of spins near a surface were shorter than
those in the bulk of a high-quality Si crystal. Our goal has been to understand what is limiting
the spin coherence in these cases. When we began this work, one common argument was that
the coherence was limited by the presence of other nearby donors or other spins, and the
resulting flip-flops between spins. According to this picture, if the spins could be fully polarized,
there would be no flip-flops, and the spin coherence could become much longer. We on the
other hand suspected that other processes, such as electric field noise, was leading to the
decoherence.

We have taken several approaches to attempt to answer these questions. Our conclusion is that
there are, in fact, other processes leading to substantial decoherence, even after the effects of spin
flip-flops are eliminated. It is likely that these effects are associated with fluctuating electric
fields, though we have not directly proven this.

One way to achieve full spin polarization would be to cool the materials to low enough
temperature that the spins almost all freeze into their ground state. That is one avenue we have
pursued, but it introduces complications, as we discuss more in the next section. The
fundamental complication is that the microwave power dissipation must be kept low, to avoid
heating, and that largely has forced the use of thin-film superconducting microresonators. These
resonators only see the spins within the first few microns (up to a few tens of microns). Instead,
we combined two experimental approaches; first using a laser tuned to a bound exciton line to
hyperpolarize the donor spins, and second using %*Si:Bi at a clock transition where the spin
frequency is insensitive to the magnetic field. The clock transition does not, by itself, eliminate
flip-flops, though it does further reduce their rate by a factor of 4. In our most lightly-doped
283i:Bi crystal we obtained a Hahn echo coherence time of ~4.5 seconds using these techniques
(along with magnitude detection to eliminate residual effects of magnetic field noise). This is the
longest Hahn-echo T, ever measured, as far as we know, but it is not as long as one would expect
if only electron spin flip-flops were controlling the coherence. An important hint as to what is
limiting the coherence was our observation that immediately after turning off the laser exciting
the bound excitons (and polarizing the spins), the measured T, was under 1 s. We found that a
short illumination with an above-gap LED, which would thermalize the spins if left on longer,
reduced the noise that was limiting T, and gave the 4.5 s result. Our interpretation of this data is
that after illumination with the bound-exciton laser, charges were moving between defects in the
crystal and causing electrical noise which limited T,. The brief above-gap illumination
neutralized most of these defects, thus reducing the noise.



We have also recently obtained other data pointing towards significant decoherence from
processes other than flip-flops in bulk 22Si:P. These data come from modeling the effect of
electron spin flip-flops on the decay of the coherence of the phosphorus nuclear spins. The
nuclear spin decays can be fit by a combination of a term with a time dependence ~expl[-
(t/T2%)*®] and one whose time dependence is exp[-t/T2]. From our modeling, the first term can be
seen to arise from the electron spin flip-flops, and those dominate the decoherence of the nuclear
spins in more heavily doped crystals (where flip-flops are more important). However, the simple
exponential decay from the second term dominates the decay for more lightly doped crystals.
While we cannot prove that this second term arises from electric field noise, it seems to be the
most likely candidate. If we make that assumption, we can estimate the magnitude of the electric
field noise, and it is about 30x less than that which has been reported for devices at interfaces.
That factor of 30 is not unreasonable for the difference between the electrical noise at a surface
and the noise in the bulk of a Si crystal (the bulk electric field noise probably is dominated by
donor-acceptor pair recombination following the optical pulse which thermalizes the spins). This
work will be submitted for publication shortly.

2. Experimental technique development

We have pursued research in three major areas: (1) high-sensitivity ultra-low power
superconducting microresonators, (2) a bound-exciton laser for polarizing and measuring the
spin of electrons bound to donors, (3) strong-coupling a spin ensemble to a resonator. In
addition we have investigated approaches to eliminating global magnetic field noise (or at least
eliminating its effects on the spins).

The superconducting microresonator work has been very successful. We first demonstrated
extremely high sensitivity in such a structure (single-shot sensitivity of ~10" spins) as well as
extremely low microwave power (400 nW peak power for a 400 ns 7t-pulse).? With their low
power requirements, these sorts of resonators are ideal for operation at dilution refrigerator
temperature. We conducted experiments along those lines in collaboration with other groups
(Prof. David Schuster at U. Chicago and Prof. Jason Petta at Princeton) who had fridges which
were already set up for these experiments. Recently with Prof. Petta (the experimental work was
all done by his students and postdocs — we supplied the sample and helped with the resonator
design) we demonstrated a single-shot sensitivity of about 2 x 10* spins® in #Si:P.

More recently we showed how photonic bandgap resonators could be used to excite both electron
and nuclear spin resonance in the same device. This work has culminated in our discovery of
direct electrical excitation of donor nuclear spins in silicon.* We have also recently published a
demonstration of experiments employing the photonic bandgap resonators made of NbTiN,
where the kinetic inductance of the superconductor can be used to rapidly tune the resonator.”

The bound-exciton laser work has proven to be partially successful. We have been able to
optically polarize spins, as we used for the Si:Bi experiments discussed previously, and in the



strong-coupling experiments discussed next. However, using the laser to detect small numbers of
spins (ideally down to single spins) has proven to be more difficult. Together with a long-term
collaborator, Prof. John Morton at University College London, we showed that laser excitation
and electrical detection for relatively small numbers of spins was possible.® However, the
applicability of this approach appears to be limited by local strains near the silicon surfaces and
interfaces. When we have attempted to make small devices, the optical resonances appear to be
excessively broadened, to the point that no resonance can be found. We have tried using
polysilicon gates, to reduce the local strains, but the resonances are still washed out. The upper
state of the optical transition (the bound exciton) is much more sensitive to strain than the donor,
and that is probably what leads to these issues.

As noted in the last paragraph, optical polarization of donor electron spins in bulk Si has been
successful, and one application of that technique has made it possible for us to study large spin
ensembles strongly coupled to a resonator. This allowed us to perform, for the first time,
experiments with large ensembles in which all the spins are uniformly coupled to the resonator
as assumed by the Tavis-Cummings model. We are able to follow about a dozen oscillations of
the energy back and forth between the cavity photons and the spins, with excellent signal/noise.
This work was recently published.’

This strong-coupling work is also related to the possibility of using spin ensembles as a quantum
memory, where a strongly coupled ensemble would be required. In the simplest approach the
spins are able to store the quantum information for a time, T,", which is generally quite short.
However, refocusing the spins with a m-pulse would trigger the avalanche that we studied in
these experiments. An approach must be found to rapidly switch the coupling between strong
and weak for the refocusing to work as desired. The tunable resonators, discussed above, might
provide a route to a long-lived spin-ensemble quantum memory.

Another experimental enhancement we pursued was an attempt to mitigate the effects of global
magnetic field noise. This noise plagues all spin experiments which cannot utilize a clock
transition or a field-cancelling decoherence-free subspace. Our approach was to lock the
microwave source driving the electron spins to a strong nuclear spin signal. In our initial
experiments we locked to the proton signal in a water cell. However, the noise in the NMR
measurement was too large to cancel the global field noise above about 100 Hz, while the global
field noise extends to at least 1 kHz. We shifted to a liquid *He NMR cell, since eventually the
experiments would need to be performed at low temperature, anyway. The signal/noise was
better (larger spin polarization at low temperature), but still not sufficient. The main limitation
was the long T; of the ®He (~30's, or longer). At this point we decided to take a break from that
work, but expect to return to it since we believe that it can be engineered to work.



3. Spin coherence in Si-based quantum dots

We used large ensembles of Si/SiGe quantum dots (~10°) to investigate the electron Ty and To.
From our previous work we had shown that T, could be >200 us, but it was T;-limited in those
structures. We had proposed to fabricate smaller dots, which we did, and were able to obtain T
as long as 1.4 ms, and T, ~ 350 ps. Thus, T, was no longer limited by T;. It is unclear what was
limiting the T, at that point. That time is within a factor of two of the expected limit imposed by
the natural abundance of 2°Si.® We were not able to obtain 22Si/SiGe to determine whether the
23Sj was limiting our spin coherence.

Typically in these devices we would measure a short T, (~10 pus) as well as a long T,. Itis
unclear what caused the short T,. One possibility is that some areas of the device had larger
valley splitting than in other areas. Since these devices were ~1 cm? in area, such variations
would easily be possible. The regions with short T, might have arisen from the areas in the
device with small valley splitting, but we did not find a way to confirm or refute that conjecture.
The different times could also have arisen from potential variations leading to multiple electron
occupancy of the dots in some areas.

We had originally planned to repeat these experiments with MOS quantum dots, since that would
also tie in with the donor/dot devices we investigated in the fourth part of this work. However,
first it was necessary to develop device processing techniques which would minimize the
production of shallow electron traps at the Si/SiO, interface. At the conclusion of that work
(discussed below), we decided that our effort would be better directed towards fabricating and
measuring individual dots, rather than large ensembles, and we concentrated our efforts in that
direction.

4. Develop donor/dot devices

It has become clear to most of the community that the length scales imposed by direct exchange
interactions between donors, as in the Kane scheme for a Si-based quantum computer,® are not
currently practical (may never be). Our suggestion for circumventing this device size problem is
to combine donors with quantum dots.*® Placing donors only into the Si layer of a Si/SiGe
heterostructure is difficult, and thus we proposed to investigate MOS structures. Our original
plan was to combine ensemble measurements with optical (bound-exciton excitation) readout,
but as discussed earlier, the optical readout proved to be problematical. Thus, we decided that
experiments on single dots would be a better approach. However, we did two sets of ensemble
experiments to better understand how to fabricate these devices.

First, we had proposed using the multiple states of Si:Bi (a total of 20 states with the 9/2 nuclear
spin of the Bi donor) as qubits. In particular, we had previously shown that there are two nearby
pairs of states at every clock transition (termed the “allowed” and “forbidden” transitions).** In



one set of experiments we showed that we could selectively excite one or the other transition
using circularly polarized microwaves.*?

As mentioned earlier, one issue when working with MOS quantum dots is that there are many
more defects and electrons traps than in Si/SiGe heterostructures. Of particular concern are the
shallow (< 10 meV trap depth) traps which are not detectable by conventional CV (capacitance-
voltage) measurements, since they are numerous and might change charge state during the
operation of the dot device. Our first goal was to obtain material and develop processes which
would minimize the number of these defects. We used an ESR-based technique which we had
developed previously to quantify the density of shallow electron traps.** One of the most
damaging processes is electron-beam lithography, since that is a very efficient way to introduce
radiation damage into the oxide. However, we obtained commercial oxides capped with
polysilicon (to protect the oxide from contaminants and form a gate), and showed that a forming
gas anneal was sufficient to eliminate the defects introduced during ebeam lithography.'* We
also showed that our ESR-based measurement quantitatively agreed with a percolation-model
analysis."

Individual quantum dots were fabricated using Petta’s “dual rail” arrangement,*® and measured at
higher temperatures (2K). The dots are relatively large (30 nm gate oxide, and similar gate
widths), but with the high-quality interfaces we expect that they will be less affected by traps
than in other MOS structures They show evidence of Coulomb blockade at 2K, which is
encouraging given the dot size. Importantly, the gate voltages where the blockade effects appear
are relatively symmetrical (gate-to-gate), indicating that they are not dominated by random
potential variations. Work on these dots is still ongoing, under other funding. Lower temperature
measurements will be required to properly judge the performance of the dots, and preparations
are being made to measure them at mK. Donors have not yet been implanted into these devices,
but those experiments will be done after the quantum dots are fully characterized.
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